
Measuring Up: Synchronizing Biodiversity Measurement Systems for Markets and Other Incentive Programs

In a world of invasive species, land conversion, and climate change, longterm viability of a particular project is paramount.

A report funded by the U.S. Department of Agriculture

Office of Environmental Markets

April 2011

Tradeoffs

Ecosystem complexity vs. My brain's capacity

How do we build metrics: Fusion or Fission

Appropriate scales of measurement

Which proxy messes us up the least?

Why are you measuring that?

Do metrics even matter? YES

A good biodiversity metric:

- A. Incorporates the landscape context of the site (e.g. location in a priority conservation area, potential threats, connectivity, patch size);
- B. Is valid (e.g. repeatable, sensitive, accurate, and transparent);
- C. Is practical, economical, and easy to use by multiple incentive programs; and
- D. Can be applied at different scales (e.g. can be used on 10,000 acres just as well as 1 acre).

Typology

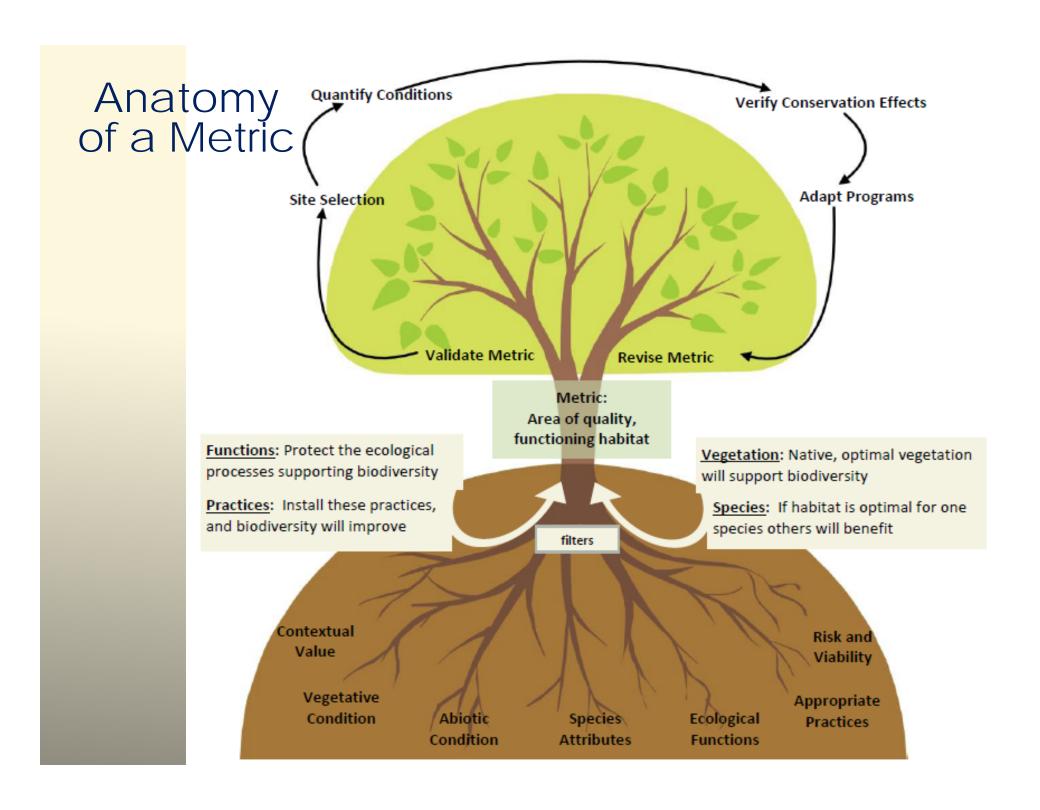
Туре	Method	Assumption	Example
Vegetation	Reference state or Benchmark site	Natural/historical vegetation will sustain native species	BioBanking, Habitat Hectares, Ecosystem Mitigation Approach
Species	Optimum habitat conditions for one or more species	Pre-defined habitat conditions will sustain species	Gopher Tortoise, Bog Turtle, Utah Prairie Dog, HSI
Functions	Ecological processes necessary to support habitat or biodiversity	Visual estimates of indicators can be transformed into functions	EcoMetrix, UMAM, Prairie, ORWAP
Practice	Prescribed practice	Practices will yield environmental benefits	WHIP, Conservation Banking

Strengths

- 1) Mostly outcome-based
- 2) Most methods are rapid visual assessments
- 3) Require on-the-ground data collection
- 4) Metrics housed within standardized protocols
- 5) Target users are conservation professionals
- 6) Using targets or performance standards
- 7) Working at the site and landscape level
- 8) Functions-based assessments gaining ground

Weaknesses

- 1) Lack of independent validation
- 2) Assumptions not tested
- 3) Costs and cost-effectiveness
- 4) Lack of national land classification system
- 5) Absence of best practices
- 6) Limited monitoring & adaptive management



Our view of metrics

- Sound & Practical (trained professional in a day)
- Transparent, Sensitive, & Repeatable
- Incorporates Context and Works across scales
- Feeds into adaptive management over time
- Aims at outcomes
- Can talk about ecosystems as wholes and parts

Things to Measure

Measurement systems need to answer the question, "What did I actually get for my investment?"

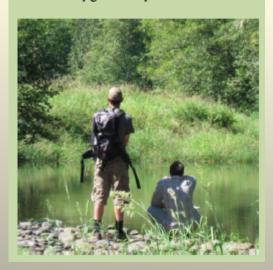


Table 2.2.1. Sample measurements for indicator classes

Indicator Class	Sample Measurement (s)		
CONTEXT			
Connectivity	Proximity index; Historic and current vegetation maps		
Priority	In a mapped priority (e.g. State Wildlife Action Plan, Ecoregional Plan)		
Surrounding land use	Distance to each surrounding land use type		
VEGETATION			
Natives	Terrestrial: % cover by strata or species, age classes, stem counts/density, species richness, target plant species presence Aquatic: % cover emergent/submergent/floating/other vegetation		
Non-natives	% cover, invasive species presence		
Bare ground	% cover		
ABIOTIC			
Hydrology	Flow, depth/period of inundation, stream morphology, special features (e.g. springs, vernal pools, groundwater, open water/ponded)		
Soil	Type, litter/duff layer depth, texture, drainage, erodability, stream		
Geographic Features	Elevation, aspect, slope, microtopography		
Disturbance	Fire return interval, wind regime, disease, flood regime		
Climate	Precipitation		
SPECIES			
Targets	Richness, presence, species counts, access to the site		
Features	Sage, nests/dens, large wood, boulders		
PRACTICE			
Crops	Irrigated/non-irrigation, type and rotation, soil conditioning		
Inputs	Water, fertilizer, pesticide, phosphorous index/com stalk nitrate		
BMPs	List of practice implemented		
Human Disturbance	Use, fragmentation, pollution		
RISK			
Threats	Predators, invasive plants and animals, roads		
Stewardship	Legal protection/ownership, existing use, ability to burn/flood		

Process for Building a Measurement System

- Define conservation goals and uses.
- Engage experts to target ecosystem functions and define indicators.
- Review existing systems, and develop a draft metric.
- Validate metric for accuracy, repeatability, sensitivity and cost.
- Finalize the metric, documented assumptions, and program design.
- Revisit measurement system after two years for potential revisions.

Counting on the Environment Metrics

<u>Upland Habitat</u>: Upland Prairie; Oak; Sagebrush; Floodplain

Aquatic Habitat: Floodplain; Wetlands; Salmon Streams

Water Quality: Temperature; Nutrients

Coming Soon: Stream Functional Assessment

One of the major barriers keeping measurement systems from being more consistent is a lack of documentation and ongoing support to maintain metrics.

Piles of data are collected on individual projects, but not in a way that adds up to a national picture of their effectiveness.

Ultimately, measurement systems should be constructed hierarchically, tiering different intensities of measurement to different program requirements.

Quantifying and verifying the biodiversity benefits of any one project or incentive program is nearly impossible to do directly.

Next Steps

QUESTIONS

WWW. WILLAMETTEPARTNERSHIP.ORG/ MEASURINGUP/MEASURINGUP.HTML